Heat transfer in protein-water interfaces.

نویسندگان

  • Anders Lervik
  • Fernando Bresme
  • Signe Kjelstrup
  • Dick Bedeaux
  • J Miguel Rubi
چکیده

We investigate using transient non-equilibrum molecular dynamics simulation the temperature relaxation process of three structurally different proteins in water, namely; myoglobin, green fluorescence protein (GFP) and two conformations of the Ca(2+)-ATPase protein. By modeling the temperature relaxation process using the solution of the heat diffusion equation we compute the thermal conductivity and thermal diffusivity of the proteins, as well as the thermal conductance of the protein-water interface. Our results indicate that the temperature relaxation of the protein can be described using a macroscopic approach. The protein-water interface has a thermal conductance of the order of 100-270 MW K(-1) m(-2), characteristic of water-hydrophilic interfaces. The thermal conductivity of the proteins is of the order of 0.1-0.2 W K(-1) m(-1) as compared with approximately 0.6 W K(-1) m(-1) for water, suggesting that these proteins can develop temperature gradients within the biomolecular structures that are larger than those of aqueous solutions. We find that the thermal diffusivity of the transmembrane protein, Ca(2+)-ATPase is about three times larger than that of myoglobin or GFP. Our simulation shows that the Kapitza length of these structurally different proteins is of the order of 1 nm, showing that the protein-water interface should play a major role in defining the thermal relaxation of biomolecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study about heat transfer coefficient of water-nanofluid in pulsating heat pipes

Pulsating heat pipe is an efficient heat exchange device which is being used for cooling and heating recovery. In the present work, we made a closed-loop pulsating heat pipe with six U-turns and we used water in our system. Moreover the use of water-Fe3O4 nanofluid was studied with two different filling ratios 40% and 50% and 1% mass concentration. At the end we calculated heat resistance and h...

متن کامل

Study about heat transfer coefficient of water-nanofluid in pulsating heat pipes

Pulsating heat pipe is an efficient heat exchange device which is being used for cooling and heating recovery. In the present work, we made a closed-loop pulsating heat pipe with six U-turns and we used water in our system. Moreover the use of water-Fe3O4 nanofluid was studied with two different filling ratios 40% and 50% and 1% mass concentration. At the end we calculated heat resistance and h...

متن کامل

The Effect of Surfactant Monolayers on the Heat Transfer Through Air/Water and Oil/Water Interfaces Using IR Imaging Technique.

An experimental investigation on the effect of surfactant monolayers on the heat transfer through air/water and oil/water interfaces was carried out by observing the changes of surface temperature with IR Imaging Radiometer (Model 760). The heat transfer resistance of various single component and mixed monolayers at air/water and oil/water systems was studied. The results show that the surfacta...

متن کامل

Numerical study on convective heat transfer for water-based alumina nanofluids

The present work is an experimental study of steady state convective heat transfer of de-ionized water with a (0.04% by volume) volume fraction of Al2O3 nanoparticles dispersed to form a nanofluid that flows through an aluminium tube.Laminar fully developed flow heat transfer coefficient of Al2O3 nanoparticles are dispersed in water in circular tube is discussed in this paper. In order to valid...

متن کامل

Numerical study on convective heat transfer for water-based alumina nanofluids

The present work is an experimental study of steady state convective heat transfer of de-ionized water with a (0.04% by volume) volume fraction of Al2O3 nanoparticles dispersed to form a nanofluid that flows through an aluminium tube.Laminar fully developed flow heat transfer coefficient of Al2O3 nanoparticles are dispersed in water in circular tube is discussed in this paper. In order to valid...

متن کامل

Numerical analysis of heat transfer in helical tube with the aluminum oxide (Al2O3) nano fluid injection in water

The most important reason for the design of curved tubes is increasing the heat transfer between the fluid and the wall which has provided many applications in various industries such as air conditioning, micro-electric, heat exchangers and etc. The aim of this study is numerical investigation of nano fluids flow in spiral tubes with injection of base fluid in different Reynolds numbers. Accord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 12 7  شماره 

صفحات  -

تاریخ انتشار 2010